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Introduction

“Robots will destroy our jobs — and we’re not ready for it” titled The Guardian in early 2017[] Headlines like
this have become more and more common over the past couple of years, with newspapers and media outlets
reporting that “the robots are coming! And they are going to take all our jobs,‘ﬂ asserting that “sometime
in the next 40 years, robots are going to take your job,’ﬂ and that “robots may steal as many as 800 million
jobs in the next 13 years,’ﬂ and proclaiming gloomy headlines such as “automation threatening 25% of jobs
in the US,’ﬂ and “robots to replace up to 20 million factory jobs by 2030.’@

While idea that technology can render human labor obsolete is not new, and concerns about technological
unemployment go back at least to p. 3) who in 1930 wrote about potential unemployment
“due to our discovery of means of economizing the use of labor outrunning the pace at which we can find
new uses for labor,” the recent proliferation of reports warning about the potential effect of new technologies,
particularly advances in machine learning and robotics, on employment stands out in terms of the number
of jobs allegedly under threat of replacement by machines and obsolescence. Different studies mention
anywhere from 10 to 800 million jobs globally as in jeopardy over the next decade or so.

How should we think about automation and potential job loss? Where do the predictions of rising
automation and job replacement come from? And what does current research say on the effects of tech-
nological change on employment? This memo will address these questions by 1) providing a summary of
the economic framework of thinking about job displacement and productivity gains, 2) summarizing and
analyzing the most influential studies claiming imminent job loss due to automation, 3) surveying recent
research in economics on the historical effect of technological change on employment, and 4) summarizing
the results and offering avenues for future research on the effect of automation technology on employment.

“Helpful comments and feedback from Suzanne Berger and members of the Ohio Group of the MIT Work of the Future Task
Force.

"PhD candidate, Department of Political Science, Massachusetts Institute of Technology, E53-434, Cambridge, MA, 02139.
Email: jwoltersl @mit.edu

"The Guardian, January 11, 2017: |https://www.theguardian.com/technology/2017/jan/11/robots-jobs-employees-artificial-
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“The Washington Post, July 7, 2017: |https://www.washingtonpost.com/opinions/the-robots-are-coming-heres-what-to-do-
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1 The basic framework: The displacement and productivity effects

The introduction of new technologies, including industrial robots, software, and other computer-controlled
machines, capable of executing tasks traditionally performed by human labor, may displace workers and
increase technological unemployment (Keynes] [T930} [Brynjolfsson and McAfee, R0T4). At the same time,
however, the introduction of new technologies often also creates new tasks, and might complement labor
such that productivity increases, augmenting the scale of production and demand, which in turn increases
labor demand [2013). This productivity effect has the potential to offset any displacement effect
induced by the introduction of new technology.

To understand the effect of automation on employment, we therefore have to understand whose jobs
might be displaced and whose productivity might increase in the wake of technological change. Scholars
have long argued that computers and machines are most likely to perform tasks that follow explicit rules,
and thus displace those occupations that mostly consist in routine tasks, for instance machine operators,
cashiers, or bookkeepers. On the other hand, non-routine tasks, particularly those requiring high cognitive
skills and involve complex problem solving, are more likely to be complemented rather than replaced by
new technology, and occupations consisting of these kinds of tasks, for instance researchers and managers,
are likely to see their productivity increase (Autor, Levy and Murnane] [2003} [Acemoglu and Autor] 20TT).

The effect of automation on aggregate employment in the long run then depends on how the displacement
and productivity effects play out in general equilibrium. As tasks previously executed by human labor are
automated, new and more complex tasks are created, in which humans have a comparative advantage vis-
a-vis machines. Recent work by [Acemoglu and Restrepo] (2018)) argues that if the rental rate of capital is
not too low relative to labor, we can imagine a stable growth path in which automation replaces some tasks,
decreasing the cost of producing with labor, which in turn discourages further automation and encourages
the creation of new and more complex tasks, increasing labor demand and productivity.

Given these complex and countervailing effects, answering the question about the effect of automation
on employment is a daunting task, and fundamentally an empirical question. Nonetheless, much of the
public frenzy about automation originated in studies that attempted to predict which tasks and occupations
will become automated in the near future. The next section takes a closer look at those studies.

2 Millions of jobs lost to automation: Where do the numbers come from?

2.1 Frey and Osborne (2017)’s influential study predicting 47% of US jobs at high risk of
automation

There is an almost innumerable number of publications predicting the effect of automation on employment
over the near and far future. Different studies use different prediction methodologies, focus on different
industries and different technologies, and come to vastly different results. The first study to attempt to
quantify the amount of jobs that might be automated, and among the most influential, was conducted by
[Frey and Osborne] (]2017[) Their study, which puts the proportion of US jobs susceptible to automation at
47%, has been cited more than 5,000 times and is referenced in numerous media and institutional reports
on the future of work, including reports by McKinsey (Manyika et al} 2017) and the [World Bank Group|
(2016). Moreover, their methodology has been applied to produce similar studies, with similar results, in
other countries (see, e.g.,[Brzeski and Burk]2013} [Haldane]2013} [Pajarinen et alJ2013)), and has influenced
the methodology employed by important and well cited OECD studies on the same topic (Arntz, Gregory

[and Zierahn] 2016} [Nedelkoska and Quintini] POT).

7(Frey and Osborne} [2017)’s work was first published as a University of Oxford working paper in 2013 before being published
in a peer-reviewed journal in 2017.
8 According to Google Scholar on 16 January 2020.




In their work, [Frey and Osborne] (2017) argue that recent advances in machine learning and mobile
robotics have extended the domain of tasks susceptible to automation beyond routine tasks to include those
non-routine tasks that are not subject to what the authors call “engineering bottlenecks.” These bottlenecks,
identified by drawing on the literature in machine learning and mobile robotics, define tasks that so far can-
not be performed by machines. Specifically, [Frey and Osborne] (2017) argue that robots are still unable to
match the depth and breadth of human perception and have trouble handling irregular objects and working in
unstructured environments, thus unable to perform well on (1) perception and manipulation tasks. Further-
more, the psychological processes underlying human creativity are difficult to specify in computer code, and
machines are thus unable to perform well on (2) creative intelligence tasks. Finally, real-time recognition
of human emotions and responding intelligently to such inputs remains challenging, and machines are thus
unable to perform well on (3) social intelligence tasks.

To identify the extent to which occupations can be displaced by machines, Frey and Osborne look at
2010 O*NET data from the US Labor Department that contains information on about the task content of 903
different occupations, which they combine with wage and employment data from the US Bureau of Labor
Statistics, resulting in a data set on 702 distinct occupations. They then ask machine learning and robotics
researchers in the context of an Oxford University workshop to hand-label those occupations where they are
confident that the occupation will certainly be fully automated or will certainly not be fully automated, based
on the O*NET task and job description for each occupation. The precise question those experts are asked for
each occupation is whether “the tasks of this job can be sufficiently specified, conditional on the availability
of big data, to be performed by state-of-the-art computer-controlled equipment.” The authors thus arrive at
70 out of the 702 occupations with a clear yes/no coding of whether machine learning experts think they are
fully automatable. Next, Frey and Osborne identify 9 specific “ability” variables in the O*NET data that
describe the occupation’s requirements in terms of the “engineering bottlenecks”: finger dexterity, manual
dexterity, and cramped work space (for perception and manipulation tasks), originality, and fine arts (for
creative intelligence), and social perceptiveness, negotiation, persuasion, and assisting and caring for others
(for social intelligence).

The authors then use the 70 hand-labelled occupations to estimate a logistical model, where the nine
ability variables are used to predict automatability. The coefficients of that model are then applied to the
remaining 632 occupations, estimating each occupation’s probability of automation as a function of the
occupation’s required “bottleneck” abilities. Frey and Osborne thus arrive at an automation score for each
of the 702 occupations (see Figure [I)), and classify those with an automation probability over 70% has
high risk occupations. According to this metric, 47% of all US employment is high risk, i.e., “potentially
automatable over some unspecified number of years, perhaps a decade or two” (Frey and Osborne] 2017}
p. 265).

A number of studies have used [Frey and Osborne] 2017)’s results to conduct similar analyses in other
countries by simply taking the automatability scores computed by the authors, and applying them to the
composition of non-US labor markets. The results are often similarly big, ranging from 59% of jobs at a
high risk of automation in Germany (Brzeski and Burk] 20T3)) to around one third in Finland, Sweden, and
the United Kingdom (Haldane] P0T3} [Pajarinen et al] 2013). Subsequent research by the OECD on au-
tomation and employment similarly adopted parts of [Frey and Osborne] (2017))’s methodology, in particular
the automatability scores assigned to the 702 occupations (Arntz, Gregory and Zierahn| 2016} [Nedelkoskal
[and Quintini] 2018)). However, the OECD researchers criticize that looking at whole occupation automation
overestimates automatability as even occupations they qualify as high risk can contain a substantial share
of tasks that are hard to automate. Instead of analyzing the potential displacement of whole occupations,
the researchers focus their analysis on the potential displacement of individual tasks by machines. In doing
s0, and treating occupations as bundles of those tasks, they infer that few occupations are fully automatable,
and modification rather than replacement is the more likely outcome for many occupations. Indeed, their
analysis finds that only 9% of jobs in OECD countries are at a high risk of automation, ranging from 6% in
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Figure 1: US Employment by Industry and Probability of Automation (Frey and Osborne 2017): This figure,
taken from[Frey and Osborne] (2017), displays the number of jobs by industry and probability of automation, based on
the[Frey and Osborne] (Z017)’s model and 2010 employment data from the US Bureau of Labor Statistics. About 47%
of all US jobs area assigned an automation probability over 0.7, which the study’s authors take to mean that they are
at high risk. These high risk jobs are particularly in the service, sales, and office and administrative support industries.

South Korea to roughly 12% in Austria and Germany.

2.2 A closer look at the methodology of Frey and Osborne’s predictions

[Frey and Osborne] (2017)’s methodology has had a great impact on numerous subsequent studies on au-
tomation and employment. Those studies either take the automatability scores of [Frey and Osborne| and
apply them to the occupational composition of other labor markets or, in the case of the OECD, statistically
relate those automatability scores to the tasks performed by different occupations in the US, and then apply
this model to the task composition of occupations in other countries. In either case, researchers fundamen-
tally rely on the initial hand coding as automatable or not of 70 occupations by machine learning experts
at an Oxford University workshop. All of their results rely on the assumption that the initial hand coding
represents the ground truth. Yet, how confident can we be in those expert opinions?

Firstly, we need to remember that those experts, whom [Frey and Osborne| simply describe as “ML
[machine learning] researcher” participating in a “workshop held at the Oxford University Engineering
Science Deparment” at an unspecified date, were asked about the automatability of occupations conditional
on the availability of big data. [Frey and Osbornefs argument is that the increasing availability of large and




complex data sets, i.e., “big data,” has enabled algorithms to detect patterns and similarities between old
and new data which, in turn, enables the computerization of non-routine tasks. Thus, the expert coding of
70 occupations does not reflect whether these experts think those occupations are currently automatable but
relates to a purely hypothetical world in which vast amounts of data are readily available to all. For instance,
the expert coding that “taxi drivers and chauffers” are fully automatable occupations (and therefore at high
risk of automation) does not mean that they currently are nor that they soon will be automatable, but rather
that if there were vast data sets on road mapping, road and weather conditions, and driver behavior, then
these occupations could be automated. While [Frey and Osborne] as well as the subsequent studies that
employ their methodology, emphasize the “engineering bottlenecks”™ as the last barriers to full automation,
they completely neglect the “data bottlenecks”, which are nonetheless inherent in their analytical approach.
Indeed, whether the kinds of data necessary to automate driving can be gathered, stored, and rendered
accessible is just as important a question as whether robots can handle irregular objects.

Putting aside the question of data availability, we next find a number of issues in both the expert hand
coding and the automatability scores computed by the model. There are some occupations where automa-
tion has already started but that were nonetheless hand coded as not automatable. For instance, “fashion
designers” are categorized as not automatable, yet Amazon first developed software able to recognize par-
ticular fashion styles and generate new clothing items in similar styles over two years ago [20T7).
Moreover, some automatability scores contradict the opinion of domain experts. For instance, “airline pi-
lots” are assigned an automation probability of only 18% whereas “industrial truck operators” have a 93%
probability of being automated. Yet flying an airplane is much easier to automate as it operates in a much
more structured environment than driving a truck. Indeed, much of any typical passenger flight is already
today done on autopilot, with the average Airbus pilot only manually flying 3.5 minutes out of every flight

(Markoff] 2015). Even takeoff and landing operations can now be executed automatically/’

2.3 McKinsey predicting between 10 and 800 million jobs lost to automation

Apart from[Frey and Osbornef's work and its descendants, a McKinsey report from December 2017
[20T7) has importantly guided the public debate around automation and job loss, being both cited
directly in media reports and influencing subsequent reports by other think tanks In contrast to
this study takes more than just technical feasibility into account for its prediction of the effect of
automation. In addition to automatability of a task, a marketable automation product needs to be developed
and adopted before that task will effectively be displaced. The report thus makes a number of predictions
about these different stages of automation, and estimates its effect in employment to be anywhere between
2016 and 2030 anywhere from 10 to 800 million jobs globally, with the midpoint of 400 million cited most
frequently in the media.

To arrive at their results, compute a somewhat opaque number of predictions and ex-
trapolations to considers the technical potential for automation and automation adoption timelines for 800
occupations across 46 countries. As in[Frey and Osborne} they start with the Labor Department’s O*NET
data set on the task composition of occupations. Each task is then further broken down into 18 capabilities,
each of which has four levels of requirement. For instance, one capability is “natural language understand-
ing,” and the associated levels range from “does not require natural language understanding” (0) to “high

"While automatically landing an aircraft, or autoland, has been used for a number of years, Airbus recently demonstrated the first
fully automatic take off: |https://www.airbus.com/newsroom/press-releases/en/2020/01/airbus-demonstrates-first-fully-automatic-
visionbased-takeoff.html

"YSee, for instance, a 2019 Brooking Institute report that found that 25% of US employment face high exposure to automation
in the coming decades, putting 36 million jobs at risk (Muro, Maxim and Whiton] 2017). To arrive at this number, the authors
combine[Manyika et al]s automation potential for each of the 800 occupations defined in the Labor Department’s O*NET data set
with localized occupational and employment data obtained from Economic Modeling Systems, a data vendor specializing in labor
markets.
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Figure 2: McKinsey Report: Technically Automatable Activities Touch 1.1 Billion Workers (Manyika et al.
2017): This graph, taken from [Manyika et al| 2017), shows the employee weighted overall percentage of tasks that
can be automated by adapting currently demonstrated technologies. For instance, for the US the researchers estimate
that close to 46% of all tasks executed by workers could already by performed by automation technology that already
exists.

language comprehension and accuracy, including nuanced human interaction and some quasi language” (4).
Other capabilities include social and emotional sensing, logical reasoning, creativity, fine motor skills, and
coordination with multiple agents. Next, use an algorithm to determine which of the 2,000
tasks comprised in the 800 occupations taken from the O*NET data set contain which capabilities and at
which level, having trained said algorithm with assessments by experts. The authors remain disappointingly
vague about this process even in their technical appendix. Using these results, the authors then estimate
the percentage of tasks that workers perform which could already be automated given the current stand of
automation technology (see Figure [2).

For work to be automated, every performance capability needed to carry out that particular activity must
be automatable at the required level, a marketable automation product needs to be developed and reach
economic feasibility, and finally said product needs to be widely adopted. thus proceed to a
number of predictions. First, they develop progression scenarios for the development of those capabilities,
trying to predict when which capability could be automated at which level. To do so, they “conducted in-
terviews with industry leaders and academic experts [and] also looked at some recent commercial successes
showcasing capabilities, as well as historic trajectory of capabilities” (Manyika et al} 2017} p. 124). Next,
they estimate how long it would take to develop a marketable solution once technical feasibility has been
established. To do so, they collected the development time of 100 previously automated solutions in both
hardware and software, recording the number of years from the initial research to product launch. Once
there is a product that could automate a given activity, assume that the cost of said product
needs to be lower than the corresponding wage for the product to reach economic feasibility. The initial
cost of the product is assumed to be a proportion, between 0 and 70%, of the highest hourly wage for the
corresponding activity across all the countries, with a yearly cost decrease of 16% for hardware products and
5.3% for software, rates determined by triangulating consumer price indices and supplier surveys. Wages
are projected using the McKinsey Global Growth Model. Finally, once the product is economically feasible,
it needs to be adopted. For this last prediction, the authors use a Bass diffusion model, estimating its pa-
rameters by using known historic technology adoptions, including stents, airbags, online air booking, color




TVs, and dishwashers. On average, they predict an economically feasible automation product to reach a
50% adoption rate within 5 to 16 years.

Using this array of predictions, estimate the number of work hours that could be auto-
mated between 2016 and 2030 in 46 countries, assuming that each hour of work that could be automated will
result in proportional job loss. In other words, if 10% of work hours hours based on the task composition of
an occupation can be automated, then 10% of jobs in that occupation will be displaced. They further assume
that the composition of the labor force in terms of occupations and tasks within occupations remains stable
through 2030. Labor force estimates for the future are obtained by combining population projections from
the United Nations, labor force participation rates from the International Labor Organization, and natural
unemployment rates taken from the OECD. By adjusting some of the inputs in their numerous predictions,
such as the time it takes an automation product to be become economically feasible or to be widely adopted,
devise a number of potential automation scenarios. In their slowest scenario, only 10 million
jobs worldwide will be displaced by automation, whereas 800 million jobs are threatened assuming fast
technological development and adaptation.

Both the questionable methodology employed by [Frey and Osborne| and the opaque prediction tech-
niques used by highlight the difficulty in determining which tasks and occupations can and
will be automated. Automatability depends on a number of difficult to predict factors, including
[Osbornefs “engineering bottlenecks” but also advances in the availability of data, and the development, pro-
duction, and adoption of automation products. Instead of attempting to predict future automation, many
scholars have therefore analyzed the effect automation has had so far on employment.

3 Mixed results from empirical studies on the effect of automation on em-
ployment

3.1 [Graetz and Michaels| (2018): No effect on employment across countries

[Graetz and Michaels| (2018)) were among the first to empirically investigate the effect of automation on em-
ployment. The authors use data from the International Federation of Robotics (IFR), covering 17 countrie@
from 1993 to 2007, on the number of robots delivered to each country by industry and year. They show that
as the price of industrial robots decreased over that time period, robot density, i.e., the number of robots
per 1,000,000 hours of human labor, increased across all industries and countries, particularly in transport
equipment and in Germany, Denmark, and Italy. Importantly, while [Graetz and Michaels|find a lower labor
share, they find no effect on the aggregate number of hours worked, i.e., no effect on aggregate employment,
with some evidence of reduced employment of low-skill workers relative to middle- and high-skill work-
ers. Instead, the researchers find a positive and substantial effect of the introduction of industrial robots on
productivity, accounting for 15% of the aggregate economy-wide productivity growth over the time period.

3.2 [Acemoglu and Restrepo| (2020): Negative effect on US employment

A recent study by [Acemoglu and Restrepo] (2020) uses the same IFR data; however, instead of relying on
cross-country and cross-industry variation, their work is at the level of local US labor markets or commut-
ing zones (i.e., zones in which people can commute to work and which thus constitute one labor market)
This allows the authors to investigate the equilibrium impact of automation technology where local robot
adoption can negatively affect wages and employment (displacement effect) while also resulting in other
tasks and other industries increasing their labor demand (productivity effect). As their explanatory variable,

"Fourteen European countries, the United States, South Korea, and Australia.
"2For a helpful and in-depth review of this paper and its methodology, see (2020).
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Figure 3: Robot Exposure Decreases Employment in US Labor Markets (Acemoglu and Restreppo 2019): This
figure, taken from [Acemoglu and Restrepo| (2020), presents the long-differences relationship between exposure to
robots and changes in the employment to population ratio 1990-2007. The solid line shows the coefficient estimate
from a regression with commuting zone population in 1990 as weights. The dashed line is for a regression which in
addition excludes the top one percent of commuting zones with the highest exposure to robots. Marker size indicates
the 1990 population in the commuting zone.

the authors construct a variable to capture a locality’s exposure to robots, using IFR data on changes in
robot usage across 19 different industrie between 1993 and 2007, combined with each industry’s baseline
employment share in each locality before the onset of recent robotic advances. Across a number of speci-
fications, [Acemoglu and Restrepo|find a negative association between robot exposure and employment and
wage growth (cf. Figure[3). In particular, one additional robot (per 1,000 workers) reduces employment by
6.2 workers and annual wages by approximately $200 in the affected commuting zone.

These effects are estimated for local labor markets; however, what would be the effect on aggregate
employment in the US once we take spillover effects and trade between those local markets into account?
If, for instance, the introduction of robots lowers consumer prices in one industry and locality, this might
very well stimulate labor demand in downstream industries in other localities. To answer this question, the
authors construct a model to extrapolate their findings to the entire country. They find that one additional
robot per 1,000 workers reduces employment by 3.3 workers in aggregate, i.e., taking into account both the
robot’s direct effect, i.e., displacing human labor, and indirect effect, i.e., reduced wages, cheaper consumer
prices, and shared capital gains across local labor markets in the whole economy. Similar to other studies,
localities with a high share of employment in manufacturing experience the highest exposure to robots, and
the greatest decline in employment.

3.3 [Dauth et al] (2017): No aggregate effect on employment in Germany as negative effect
in manufacturing, driven by fewer entrants, is offset by gains in the service sector

Moving beyond the level of the locality, researchers in Europe have taken advantage of micro-data on in-
dividual workers to estimate the effect of automation on employment. Research in Germany, led by
(2017), uses individual-level data, tracing the employment biographies of 1 million German workers
with varying degrees of exposure to robots. This data set is combined with IFR data, covering 53 manufac-
turing industries and 19 other industries between 1994 and 2014. Local robot exposure is then measured as

BThirteen industries within manufacturing and 6 outside.
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Figure 4: Increased Peak Electricity Consumption for Motors Increases Employment (Aghion et al. 2020): This
figure, taken from [Aghion et al] (2020), shows the development of plant employment after a change in the plant’s
peak electricity consumption for motors, which the authors use as a proxy for increased automation technology. Their
model’s specifications include both 4-digit industry and year fixed effects.

the change in the number of installed robots per thousand workers over the period 1994-2014 for each in-
dustry, adjusted to the local employment composition in 402 local labor markets. Between 1994 and 2014,
robot exposure increased the most in Wolfsburg and Dingolfing, the two biggest production locations for
Volkswagen and BMW, respectively. Overall, robot exposure varies from 0 to 7.6 robots per 1,000 workers,
a wider range of values than in the United States.

find a strong positive correlation between robot usage and local employment, driven mainly
by the automotive industry. Controlling for local industry structures, the authors find an overall null effect
of robots on aggregate employment. They do find negative effects on manufacturing employment, where
one additional robot results in two fewer manufacturing jobs. In other words, they estimate robots caused
23% of the overall decline in manufacturing jobs in Germany between 1994 and 2014. Yet, these negative
effects are offset by by job gains outside of manufacturing, particularly in the service sector.

Even in manufacturing, however, robots do not result in a direct job loss of workers. Indeed, workers
from more robot-exposed industries are more likely to remain employed. Instead, the flow of labor market
entrants going to robot-exposed industries declined as robot exposure increased. “Put differently, robots do
not destroy existing manufacturing jobs in Germany, but they induce manufacturing firms to create fewer
new jobs for young people” (Dauth et al] 2017} p. 8). In terms of wages, increases are experienced mostly
by high-skilled workers (e.g., managers and scientists), whereas low- and medium-skilled workers with
increasing robot exposure experience sizable decreases in wage levels. These decreases are not the result of
displacement and interrupted work but mainly arise from existing jobs with lower wage levels.

3.4 [Aghion et al] (2020): Positive effect on French manufacturing firms that face interna-
tional competition

A recent working paper by [Aghion et al| (2020) uses micro-data from French firms between 1994 and 2015
to estimate the effect of automation on employment and a number of other variables. Their data encompass
the universe of French manufacturing plants, as well as their employees. The authors use two measures to




capture the use of automation technologies: (1) each plant’s balance sheet value of industrial equipment and
machines and (2) each plant’s electricity consumption for motors directly used in the production chain. Us-
ing an event study design, in which the authors exploit sudden increases in a plant’s equipment expenditure,
peak electricity consumption for motors, as well as an instrumental variables design that exploits productiv-
ity shocks in foreign suppliers of industrial equipment, find a positive effect of automation on
aggregate employment, even for low-skill workers, in addition to resulting in higher profits, lower consumer
prices, and higher sales (see, in part, Figure ). The authors take this as evidence that increased automation
allows the firm to expand its sales and scale, which results in additional hiring of human labor. Interest-
ingly, the authors find that the employment effect is only positive and significant for industries that face
international competition, which the authors measure as the export share of final products. In other words,
where domestic industries face international competition, automation-induced increased productivity and
lower prices can reallocate demand away from foreign imports and toward domestic firms.

3.5 [Acemoglu, LeLarge and Restrepo] (2020): Firm-level increase but market-level decrease
in employment results in overall job losses

Where [Aghion et al] (2020) use a very broad measure of automation technologies, [Acemoglu, LeLarge]
[and Restrepo] (2020) use government and robot supplier data to look more specifically at the effect of the
acquisition of industrial robots by French manufacturing firms between 2010 and 2015. Out of 55,390 firms,
only around 1% (598 firms) purchased any industrial robots between 2010 and 2015; however, those firms
account for 20% of French manufacturing employment. [Acemoglu, LeLarge and Restrepo] (2020) show
that when those firms purchased robots, labor shares generally declined while value added and productivity
increased at those firms. With increased productivity and decreased costs, the authors argue, those firms
are able to gain a greater market share, resulting in employment increases at the firm-level. However, those
gains are offset by employment losses at the industry level as employment decreases at other firms that are
losing market share. Overall, [Acemoglu, LeLarge and Restrepo] (2020) estimate that a 20 percentage point
increase in robot adoption in an industry is associated with a 1.6% decline in that industry’s employment.
The authors link their results to the “superstar effect”, identified by [Autor et al]] (2020)), which explains
the declining share of labor in GDP with the reallocation of output to a few “superstar” firms with a lower
labor share and higher productivity than average firms. [Acemoglu, LeLarge and Restrepo| (2020)) argue that
in France, that reallocation to large “superstar” firms is driven by automation in the form of robot adoption.

3.6 [Koch, Manuylov and Smolkal (2019): Job creation at firms adopting robots, job losses
at those who don’t

The question of where the displacement effect takes place, whether within automating firms or within non-
automating firms that experience a relative decrease in competitiveness, is one that is starting to attract
researchers’ attention. A working paper by [Koch, Manuylov and Smolkal (2019) looks at industrial robot
adoption by 1,900 Spanish manufacturing firms between 1990 and 2016. They find that robot adoption was
the most likely for firms that were already larger and more productive; conditional on productivity, firms
that were more skill-intensive were less likely to adopt robots, arguably because skill-intensive work is more
difficult to automate.

[Koch, Manuylov and Smolkal 2019) find that firms that adopted robots between 1990 and 1998 experi-
enced output gains of 20% - 25% in the four years following adoption, while the labor cost share generally
decreased by 7%. Moreover, net employment at those firms increased by an average of 10%. At the same
time, the authors find considerable job losses at those firms that did not adopt robots as they face tougher
competition from more productive high-technology firms (cf. Figure [5| In particular, [Koch, Manuylov|
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Figure 5: Robot-adopting forms create jobs, non-adopters shed them (Koch et al. 2019): This figure, taken
from [Koch, Manuylov and Smolka] (2019), depicts the evolution of average firm employment in a balanced sample of
Spanish manufacturing firms between 1990 and 2016. The solid black line represents robot-adopting firms, i.e., firms
that entered the sample in 1990 and had adopted robots by 1998. The dashed line represents non-adopters, that is those
who never use robots over the whole sample.
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Figure 6: Robot investments are associated with more employees overall but fewer managers (Dixon et al.
2020): These two figures, taken from [Dixon, Hong and Wu] (2020)), depict the coefficients of a multivariate regression
of time-indexed dummy variables on the log of employment headcount. The left hand figure shows total employment
and the right hand figure managerial employment. Prior to the initial robot adoption, there is no statistically significant
difference in employment trends; however, substantial total employment increase happens beginning in the first year
of robot adoption while simultaneously managerial employment starts to decrease.

[and Smolka] (2019) estimate that 10% of jobs in non-adopting firms are destroyed when the share of sales
attributable to robot-using firms in their industries increases from zero to one half.

3.7 [Dixon, Hong and Wu| (2020): Industrial robots lead to fewer mid-level managers and
more low- and high-skilled workers in Canada

Beyond the question of whether job displacement happens within automating firms or outside, it is also
important to understand where job losses might occur inside firms. [Dixon, Hong and Wu] (2020) take
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Figure 7: Automation Leads To Layoffs but Unemployment only for Long-term Workers (Bessen et al. 2019):
These two figures, taken from [Bessen et al] (2019), shows the effect of a spike in a company’s automation expenditure
on employment for both incumbents who have been at the company for three years and longer and more recent hires.
Automation spikes are defined as sudden increases in automation expenditure that bring the share of automation costs
in total operating costs to thrice the previous yearly average. The left hand graph illustrates that the probability that an
employee separates from a company after an automation spike is positive and similar for both incumbents and recent
hires. The right hand graph shows it is only incumbents who see their number of days in unemployment increase,
whereas recent hires are able to find new work elsewhere.

advantage of the fact that Canada relies almost exclusively on foreign robot manufacturers to supply its
domestic companies and use data from the Canadian Border Services Agency on imports of industrial robots
to study how firms’ investment in automation changes employment structures within those firms. They find
that, overall, a one percent increase in robot investments predicts a roughly a 0.015 percent increase in total
employment at the firm. However, that increase is not uniform across employees.

In particular, investment in industrial robots predicts a substantial decline in managerial employment,
combined with a substantial increase in non-managerial employment, both low- and high-skilled (cf. Fig-
ure [6] [Dixon, Hong and Wu| (2020)) argue that one of the main effects of robots on the production process
is a decrease in quality variation, resulting in a decreasing need for mid-level managers to control product
quality.

3.8 [Bessen et al]([2019): Negative effect on Dutch employment for incumbents only

Moving beyond the effect of just industrial robots, work by [Bessen et al| (2019) analyzes the effect of all
types of automation technologies on employment. Using Dutch administrative data, covering over 36,000
companies and close to 5 million workers between 2000 and 2016, the researchers are able to directly
observe each worker’s employer, gross wage, and number of days worked, as well as each company’s au-
tomation expenditure. The latter variable includes the purchasing and operating costs not only of industrial
robots but also of software, warehouse storage systems, automated customer service, and other automation
technologies. show that between 2000 and 2016, the share of automation costs in total oper-
ating costs has increased across all industries in the Netherlands, though particularly in the information and
communication sector as well as the administrative and support activities sector. Moreover, the larger the
company, the larger the share of automation costs.

In terms of employment and wages, the authors find that after “automation cost spikes,” sudden increases
in a company’s automation expenditure which the authors argue signal changes in work processes related
to automation, the probability that the company lays off workers increases. Workers who had been with
the company for more than three years (i.e., incumbents) also see their number of days in unemployment
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increase and their wages decrease, meaning they’re unable to find work elsewhere. However, more recent
company hires, i.e., workers employed the year before the automation expenditure spike, are more able to
find work elsewhere, and thus experience less of a decrease in their wages and increase in the number of
days in unemployment (see Figure [7). Interestingly, do not find evidence for a skill bias:
Workers lower down the wage level for their age, i.e., low-skill workers, are not more likely to be laid off
nor see their wage decrease than high-skill workers. Older workers, on the other hand, are less likely to find
new employment after an automation induced layoff. The rate of early retirement increases by 24% after an
automation spike.

4 Summary: Shaky predictions about job losses that ignore productivity
effects, diverging empirical evidence, and future avenues for research

This memo set out to answer a number of questions questions. First, where are the predictions that automa-
tion will lead to unprecedented job losses coming from? Second, how sound are those predictions and what
potential weaknesses might be involved in those estimates? Third, what conclusions can be drawn from
the major contributions in the literature on how actual adoption of automation technologies has affected
employment both in adopting firms and in their industries.

As laid out in Section[2] many of the studies predicting large job automation in the US and Europe have
their origin in a study by [Frey and Osborne] (2017), and incorporate parts of their questionable methodology.
In particular, the expert assessment their models rely on assumes a degree of big data availability that is not
yet given. While these studies do take “engineering bottlenecks” into account, that is the fact that automation
technology still faces technical hurdles in executing certain tasks, they ignore the “data bottlenecks” inherent
in their methodology, that is the fact that we still don’t have the vast amount of data readily available that
their expert assessment on automatability is conditioned upon.

Moreover, just because an occupation or a task can be automated in theory, which is what many of these
studies estimate, does not mean that they are being automated in practice. Purchasing, integrating, and
maintaining automation equipment is costly. Once machines are installed and integrated, they cannot easily
be returned. Given the limited flexibility of much automation equipment (both in terms of hardware, e.g.,
grippers, and software)ﬂ re-programming a robot to perform even a slightly different task is expensive.
When labor is relatively cheap and flexible, and product demand is unpredictable, it can thus be cheaper for
a company to retain human labor for tasks that it could theoretically automate. It is also worth highlighting
that these predictive studies, even those considering not just technical but also economic feasibility (cf.
manyika2017future), focus entirely on the potential displacement effect of technology without taking into
account possible productivity effects.

Instead of trying to predict what might happen, many academics have look at what has happened to
employment after the introduction of new technologies in the past. As laid out in Section [3] this empirical
work has come to a number of sometimes contradictory conclusions.

On the one hand, the introduction of new technologies, particularly industrial robots, has been shown
to result in large productivity gains which, in turn, can increase employment as automating firms gain a
larger market share and new tasks become available (Acemoglu, LeLarge and Restrepo} 2020} [Aghion et al]
2020} [Dixon, Hong and Wul 2020} [Koch, Manuylov and Smolkal 2019). At the same time, there is also
evidence of a direct replacement effect of automation technologies that can lead to a decreasing need for
additional (Dauth et al} P017) and existing (Acemoglu and Restrepo] [2020} [Bessen et al} 2019} [Dixon)
[Hong and Wu] 2020) workers at automating firms. That displacement effect is not uniform across workers.
In Canada, industrial robots have displaced mainly mid-level managers whose main task of monitoring

“For an insightful and in-depth discussion, see |F0urie and Sannemanl (I2020I).
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product quality has been made superfluous by meticulous and exacting production machines
[2020). In the Netherlands, automation technologies have almost exclusively displaced incumbent
workers who have been employed at their firms for more than three years while not affecting the employment
of more recent hires (Bessen et al} 2019). Moreover, displacement need not happen purely at the companies
that acquire automation technologies. Research has indeed shown that as automating firms become more
productive, non-automating firms in the same industry face increasingly tough competition and start to shed
jobs (Acemoglu, LeLarge and Restrepol 2020} [Koch, Manuylov and Smolkal 2019).

The overall impact of automation technology on employment then depends on the relative size of the
productivity and displacement effects. The empirical results here are mixed. Some studies estimate an
aggregate positive effect on jobs (Aghion et al] 2020} [Dixon, Hong and Wul 2020). Others arrive at a
neutral effect where the displacement effect is canceled out by the productivity effect within the same
[Manuylov and Smolkal [2019)) or other (Dauth et al ] 2017) industries (cf. also[Graetz and Michaels|2018). A
number of studies also conclude that the overall effect is negative (Acemoglu, LeLarge and Restrepo} 2020}
[Acemoglu and Restrepo] 2020} [Bessen et al ] 2019).

Several avenues for future research emerge from this literature. First, different automation technolo-
gies may have different effects on productivity and jobs. Indeed, the diverse definitions of automation in
the aforementioned studies, ranging from industrial equipment and electricity-consuming production mo-

tors (Aghion et al] [2020), to industrial robots (Acemoglu and Restrepo] 2020} [Dauth et al} R017} [GraetZ]
[and Michaels] P0T8), to all types of automation technology, including software (Bessen et al} 2019), may

partly be responsible for apparently contradictory conclusions. For instance, a clearer understanding of how
industrial robots affect manufacturing employment relative to software automation in back offices would be
useful.

Second, incorporating labor policy and regulations into our theories would help us to better understand
cross-country differences. For instance, an explanation of why industrial robots might reduce aggregate
employment in the US but not in Germany needs to take into account the fact that Germany has a dualized
political economy in which current core manufacturing workers are highly unionized and protected from
layoffs whereas younger workers and employees in other sectors face much more precarious working condi-
tions. Moreover, German works councils, firm-specific shop-floor organizations representing workers, give
workers voice in determining firm policies, including automation strategies. Works councils usually elect
members of the company’s board of directors, and have to be consulted about important management deci-
sions. In a recent study conducted by 1G Metall, the dominant metalworkers’ union in Germany, about half
of all surveyed works councils affirmed being informed about and involved in the development and imple-
mentation of automation strategies (IG Metalll 2019). These German particularities could explain why the
introduction of industrial robots in Germany did not directly decrease the number of manufacturing workers
but rather decreased the number of new hires in that sector (Dauth et al} R017).

Third, it appears crucial to understand why certain firms within a given industry decide to automate while
others do not. Some of the research mentioned in this memo shows that large firms are much more likely to
automate than smaller companies, and that by acquiring industrial robots they increase their productivity and
subsequently their market share, resulting in increasing product market concentration (Acemoglu, Lelarge]
[and Restrepol 2020} [Koch, Manuylov and Smolkal 2019). Why aren’t smaller companies acquiring similar
automation technology? And what might the consequences of automation be for market concentration,
competition, and small- and medium-sized businesses?
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